Deletion of Cdc42 in embryonic cardiomyocytes results in right ventricle hypoplasia

نویسندگان

  • Yang Liu
  • Jian Wang
  • Jieli Li
  • Rui Wang
  • Binu Tharakan
  • Shenyuan L Zhang
  • Carl W Tong
  • Xu Peng
چکیده

BACKGROUND Cdc42 is a member of the Rho GTPase family and functions as a molecular switch in regulating cytoskeleton remodeling and cell polarity establishment. Inactivating Cdc42 in cardiomyocytes resulted in embryonic lethality with heart developmental defects, including ventricular septum defects and thin ventricle wall syndrome. FINDINGS In this study, we have generated a Cdc42 cardiomyocyte knockout mouse line by crossing Cdc42/flox mice with myosin light chain 2a (MLC2a)-Cre mice. We found that the deletion of Cdc42 in embryonic cardiomyocytes resulted in an underdeveloped right ventricle. Microarray analysis and real-time PCR data analysis displayed that the deletion of Cdc42 decreased dHand expression level. In addition, we found evaginations in the ventricle walls of Cdc42 knockout hearts. CONCLUSION We concluded that Cdc42 plays an essential role in right ventricle growth.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cardiomyocyte-specific deletion of the coxsackievirus and adenovirus receptor results in hyperplasia of the embryonic left ventricle and abnormalities of sinuatrial valves.

The coxsackievirus and adenovirus receptor (CAR), which mediates infection by the viruses most commonly associated with myocarditis, is a transmembrane component of specialized intercellular junctions, including the myocardial intercalated disc; it is known to mediate cell-cell recognition, but its natural function is poorly understood. We used conditional gene targeting to investigate the poss...

متن کامل

The Effect of Cardio Gel and Matrigel on the Ultrastructure of Cardiomyocytes Derived From Mouse Embryonic Stem Cells

Purpose: To investigate the effect of cardiogel and matrigel on the ultrastructure of embryonic stem cell-derived cardiomyocytes. ECM: Extracellular Matrix derived from cardiac fibroblasts (cardiogel), commercial extracellular matrix (matrigel) and control group (without ECM) were cultured for up to 21 days. Ultrastructural properties of cardiomyocytes were evaluated by transmitting electron mi...

متن کامل

Genetically Engineered Mouse Embryonic Stem Cell – derived Cardiomyocytes as a Suitable Model on Drugs Toxicity In vitro

Background DOX is a powerful chemotherapeutic agent used in the treatment of solid tumors and malignant hematological diseases. However, its cardiac toxicity limits the clinical usefulness of this drug. Previous reports have shown Corticosteroids induce a cytoprotective effect on cardiomyocytes. Mouse transgenic embryonic stem cell-derived pure cardiomyocytes may be considered as a model for a...

متن کامل

Embryonic stem cells derived cardiomyocytes are a suitable model for assessment of cardiotoxic effects of doxorubicin and other drugs

Introduction: Doxorubicin is frequently used for treatment of several types of cancer. Doxorubicin cardiac toxicity has limited the use of this drug. Corticosteroids may prevent doxorubicin induced cardiotoxicity. Therefore the aim of this study was to evaluate mouse embryonic stem cells derived cardiomyocytes as a model to evaluate the effect of Doxorubicin and dexamethasone. Methods: Mouse ...

متن کامل

Morphogenesis of the right ventricle requires myocardial expression of Gata4.

Mutations in developmental regulatory genes have been found to be responsible for some cases of congenital heart defects. One such regulatory gene is Gata4, a zinc finger transcription factor. In order to circumvent the early embryonic lethality of Gata4-null embryos and to investigate the role of myocardial Gata4 expression in cardiac development, we used Cre/loxP technology to conditionally d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017